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Abstract. We consider steady states of the one-mode quantized field interacting with two
independent baths, each characterized by the one- and two-photon absorption and emission
processes. In the absense of two-photon emission, using an exact analytical solution to the
master equation for the diagonal elements of the density matrix in the Fock basis in terms of
the confluent hypergeometric function, we obtain simple explicit expressions for the photon
distribution function and for the factorial moments in the limiting cases of weak and strong two-
photon absorption. If the two-photon absorption is strong enough, the steady state exhibits a sub-
Poissonian photon statistics characterizing nonclassical behaviour, but Magidpbsameter
cannot be Ies&%. However, the distribution depends essentially on the temperature of the ‘one-
photon bath’. For weak two-photon absorption, the stationary distribution is Gaussian, provided
that the temperature of the ‘one-photon’ bath is high enough. For an inversely populated ‘one-
photon’ bath, theQ-parameter is close té. In a generic case of nonzero two-photon emission
probability, approximate asymptotic expressions for the factorial moments are found.

1. Introduction

In many cases, the process of quantum relaxation can be described in the framework of the
master equation for the statistical operafofl-3] (& = 1)

38—’; +i[H, p] = % ; DyQRApA] — AJArp — pAJAy) @
where Ay’'s (k = 1,2,...) may be arbitrary linear operators, am}’s are nonnegative
constants. If the system under study is an electromagnetic field mode (or an equivalent
harmonic oscillator), then Hamiltoniai and each operatok; can be expressed in terms of

the annihilation and creation operatarsi' satisfying the commutation relatioa,[a] = 1.

It is not difficult to solve equation (1), ifi, coincides witha or a' [4-7]. However, the
problem becomes much more complicated, if some operatpiisiclude the powerg” or

(ah", which are responsible for th@ultiphoton processes [8]. For instance, exact time-
dependent solutions for trdiagonal matrix elements of the statistical operator in the Fock
basis were found in the following cases only:= 1, A; = (af)? (two-photon emission
[9-11]); k = 1, A; = 42 (two-photon absorption [10, 12—-15};= 1, A; = 4" with n > 2
(multiphoton absorption [16, 17]%k = 1, Ay = @hH" withn > 2 (multiphoton emission
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[17]). The evolution of the off-diagonal matrix elements in the case of two-photon absorption
was studied in [18], and for-photon absorption in [17]. Other references can be found,
for example in [19, 20]. In all those cases, the solutions dependsimge coefficientD;.
Time-dependent solutions for the diagonal elements of the statistical operator in the case
of two independent coefficients, with, = @ and A, = 42 (competition between one- and
two-photon absorption), were obtained in [21, 22]).

Other exact solutions with two nonzero coefficients were found in the stationary regime
only. Form-photon absorption ang:-photon emission (the systems in detailed balance),
Ay =am Ay = @H"[L+y@G+ DG +2) - (A +m)] Y2, this was done in [23]. Here
i = a'a, and the coefficieny is responsible for the saturation effect in the multiphoton
generalization of the Scully-Lamb [24] single-mode laser equation (the special case of
m = 2 was studied in [14], and the casejpt= 0 was also considered in [25]). A scheme
of obtaining exact stationary solutions of the two-photon Scully—Lamb equation with single-
photon lossesA; = a, A» = @H1 + y (i + 1)@ + 2)]"Y?) was given in [26], it was
generalized to the case of-photon emission in [27]. Different approximate solutions of
the stationary multiphoton laser equations were given, for example in [28—-31] (two-photon
emission and single-photon absorption), [32]-ghoton emission and absorption @
photon emission and single-photon absorption), [38}photon emission and absorption
plus additionak-photon absorption, including the cases> k andm < k).

In this paper we continue the study of the competition between one- and two-photon
processes which began in [22]. Now we include, besides absorption, the emission processes.
In this case, it is possible to find exact analytical expressions fosti®naryvalues of the
diagonal matrix elements of the statistical operator, provided thatardyphotonemission
processes are present [34, 35]. In section 2 we give the explicit solution to the problem in
terms of the confluent hypergeometric function. Sections 3-5 are devoted to the detailed
analysis of different interesting limiting cases, when the results can be expressed in terms
of more simple functions. In section 6 we obtain approximate solutions for the factorial
moments in a generic case, when both one- and two-photon emission processes are present.
Section 7 is devoted to a discussion and conclusion.

2. Exact solutions

In the stationary case, equation (1) withur operatorsA.: &, a', a2, and(a"?, leads to
the following set of equations for the diagonal matrix elements of the statistical operator,
pn={n|pn),n=0,1,...:
D [(n+ 1)1 + 2 puyz — n(n = Hp,] = DS [(n + (1 + 2)p, — n(n = 1)p, 2]
+D§_a)[(n + 1)pn+l - npn] - D:([d[(n + 1)[7;1 - npn—l] =0. (2)

The coefficientsD\”” and D\’ are responsible for the strength of thephoton ¢ = 1,2)
absorption and emission processes, respectively. Introducing the generating function

F(z,0) =) pa()?" 3

n=0
we can replace an infinite system of difference equations (2) by a single differential equation
with respect to an auxiliary variablg
L+2)A— pz?)F" +[v(L—&2) — 4pz(L+ )] F' — [vE + 20(L+2)]F =0 (4)
where the new coefficients are defined as
v=D/Df  £=DY/DY  p=D§/Df. ©)
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Coefficientv is nothing but the ratio of the numbers of atoms in the ‘one-photon’ and ‘two-
photon’ reservoirs multiplied by the ratio of the corresponding coupling constants. The
parameterg and p characterize the temperature of each bath. Indeedlyif= DY’ = 0,

and¢ < 1, then equation (4) results in the Planck distribution,

1-¢& ,
F@ =  pP=Q0-5" (6)
1—z¢&
Consequently, the temperature of the ‘one-photon’ bath can be introduced via the relation
£ = exp(—hw/xT). For D\ = D\ = 0, we have [23, 25]
A-p)A -y +2zy)
1-22 (7)
P2, =A—pp" (v +j - =01
where the additional parameter, characterizing a relative weight of the odd oscillator
eigenstates, is determined by the initial conditions. Evidently, a stationary solution is stable
provided thatp < 1. However, no restrictions on the ratfgp exist, i.e. the temperatures
of the ‘one-photon’ and ‘two-photon’ baths may be different. Moreover, the case of an
inverted ‘one-photon’ bath with a negative temperatgre; 1, is also admissible.
Let us first consider the special cgse= 0 (‘cold two-photon bath’). Then equation (4)
is reduced to the Kummer equation
xy" 4+ (c—=x)y' —ay =0 8)
so it can be solved exactly. Since the generating funciion) cannot have a singularity

atz = —1, we choose a regular solution to (8) in the form of the confluent hypergeometric

function ® (a; ¢; x), and obtain the following solution to (4) (see also [35]):
D v[1+&]; vE[1+2))
F(z) = [ d é"f[ | . 9
®(1; v[1 + £]; 2v€)
It can be expressed also in terms of the incomplete gamma function [34,35]. The
normalization factor is chosen in order to guarantee the identity

FQ1) = an =1
n=0

Knowing the generating function, we can calculate the probabilities
pn = (1/nV)3"F/07"|,—0
and the factorial moments

Fa(z) =

[
N =Y n0 =1 (1= m+1)p, = 0" F/0:"|.s.

Using the relation [36]
d ®(a:cix) = (@)n
der O T ),

S(@a—+n;c+n;x)

where
(@p=a@+l)---(a+n-1
we obtain the following expressions, which hold fok( < oo:
_ (EV)"OA A4 n; v[1 +E] +n; vE)
" [L+ED, DL V[ +£]; 208)
N — m!(EV)" DL+ m; v[1 + €] + m; 2v€)
" (V[ + EDn®(L; v[1 + £]; 208)

(10)

(11)
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However, in numerical calculations it is more convenient to use the integral representation
[36]
r 1
®(a;c; x) = L / ey N1 — ) tdu
'@ (c—a) Jo

Thus, atv[1 + £] > 1 equations (9)—(11) can be rewritten as follows
Fioy = oL+ vELL + 2]
Io(v[1 + &]; 2v€)
(&)L, (v[1 +&]; vE)
" nl ([l + £]; 2v8)
_ n In(V[1 + &]; 2v&)
Ao = EV" L+ 8] 2v8)

where

i

1
L.(c;x) = / ey (1—u)%du = d Io(c; x)
0

dxn

Now let us investigate the limiting cases of equations (9)—(11).

3. Strong two-photon absorption

c>1

(12)
(13)

(14)

(15)

If the two-photon absorption dominates over one-photon processes(1+ &) « 1, then
only the ground state and the first excited level are populated with noticeable probabilities.

In this case, one can simplify the functida; c; x), using its definition

00 k
D(a;c;x) = Z (@)x

= (c)ik!
and the relations
()o=1 () ~ c(k = 1! (n+ o)~ (n)
Finally, we obtain (cf [35])
_1+2 _é
PO—1+3€+O(V) Pl—ﬂ*‘o(‘))
- 1)nfl%-n
P =i+ 3g) ~
For the ‘hot one-photon batht = 1, we obtainpy = 2 and p; = ;

‘completely inverted bath’é > 1 (butvé « 1), we havepg = % and p;
statistics becomes sub-Poissonian:

O~ —-N1~ —£/(1+3%)
where
Q=NMNo/N1 — N1

2

n, k> 1
(16)
(17)
whereas for the

3. The photon

(18)

(19)

is the known Mandel’'s parameter. This a typical result for a sufficiently strong two-photon
absorption process [19, 20]. The boundary between the sub- and super-Poissonian statistics
is given by the equatio® = 0, which is equivalent to the relation1+ &) = 1. In such a

case, we have thexact Poissonian statistics [35], due to the relatidia; a; x) = exp(x).
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mean photon number

w

Figure 1. Mean photon number versus¢ = Di")/Di"). The numbers on the full curves

give the values o = D(l‘”/Dg’): 1, 10, 100, 1000. The broken curve describes Planck’s
distribution.

4. Weak two-photon absorption

If v - oo (D2 — 0), then equations (9) and (10) must yield the expressions corresponding
to the Planck distribution (6). However, the limit procedure is not trivial in the high
temperature casé — 1: see figure 1. Ifc > 1 and 8 < 1, the asymptotic
formula 6.13.3(18) from [36]
- a(a+1)p?
d(a; c; =(1- a 1- - 7 e
(@;c;cp)=(1—=p) [ 2c(1— p)?
shows that the Planck distribution can be obtained only under the conditidrsz)? > 1
andn?/v <« 1. To find a simple asymptotic expression, valid &ir values ofg, we notice
that the main contribution to the integraj(c; x) with ¢ > 1 is given by the points in the
vicinity of u = 0. Using the substitution

(1 —u) % = explic — 2 In(1 — w)] ~ exp[-(c — 2)(u + u?/2)]

and extending the integration domain up to infinity, we obtain the asymptotiés(@fx)
and F (z) in terms of the error function:

)= ¢ (Vx(1—2z8)

F
© = (/xa=-9)

(20)

where
vV

_ 2 _
p(y) = exp(y9erfc(y) X = m

(21)
and

erfo(x) = (2/v/7) /oo exp(—r2)dr.
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Equation (20) holds for(1+&) > 1. Since the derivatives of functign(y) are expressed
in terms of the parabolic cylinder function (see equation 8.2(19) from [36]),

d’”(p(y) _ \/7m!(_1)m2m/2 exmyz/Z)D,mfl (y\/é)
dym T

we obtain
D_,_1(/2
f (25222 D1V 2N) (22)
(f 1-8)
An asymptotic expression for the parabolic cylinder function of a large argument is given
by equation 8.4(1) from [36]. In the case under study it can be transformed into the form

D_,_1(x) = x " Le/4Q, (x) x> 1

where

o0

1
o0 =3 (- )"(k",(;xz))zf

Replacing(n + 1) by n%, we obtain a simple interpolation expression fop> 1,
©, (x) ~ exp[-n®/(2?)].
Thus we have the following asymptotics of the photon distributiog &t 1:

_ & expln?/(4y)]
e (Jx@-6)

If /x(1—£)) > 1, this formula goes to the Planck distribution due to the asymptotics [36]
o(y) ~ 1/(/my). Keepingv = constant and increasing the temperature of the first bath,
we shall reach the high-temperature regimg Q/x(1—-£) « 1. Since erf@0) = 1, in this
case (an infinite temperature of the first bath) we obtainGhess distribution(y ~ v/4):

= few(-7). (24

The asymptotics of the:th factorial moment at(1+ &) > 1 reads

(23)

Ny = mly/2/m (252" 2 expld = )%/ AD-0-1 (V2x 1= ) /0 (VX2 = §) . (25)

If /x(1—§&)> 1, we obtain the Planck distribution with

N, =m! (155)’” )

In the opposite casg/x (1 — &) « 1, the parabolic cylinder function can be replaced by
its value at zero argument [3@),(0) = 2“/21“(%)/ I'([1 - «]/2), so we have

N =T ([m + 1]/2v™? /7. (26)

This approximate formula is in a good agreement with the exact one even-fat.
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5. Inverted one-photon bath

Equations (10) and (11) have no singularitieg at 1, moreover, they hold for an inversely
populated ‘one-photon’ bath with negative temperatgre (1). In this case it is convenient
to introduce the parameters

pw= DY /DY = ve n=1/¢ A+ &) =pnld+n).

Consider equation (14) for theth factorial moment. To calculate the functidp(u[l +
n]; 2u) we write the integrand in equation (15) as ex@{)], where

o) =2uu +[pn@+n) — 21N —u) + minu.

For u > 1, n < 1 (inverted bath), andh ~ O(1), the maximum ofp () is achieved at

u, ~ (1—mn)/2, i.e. inside the interval0, 1). Consequently, the integral can be evaluated
with the aid of the steepest descent method. In the zero-order approximation one arrives at
the formulaN,, ~ [u(1 — 1)/2]", meaning a Poissonian photon statistics. To obtain the
first-order corrections (with respect tg,1), one has to calculate the saddle-point coordinate

u, With an accuracy of Au?. After some algebra we arrive at the expression

(s, mlm 14 n0m —3)]
A [5(1 i <1 T a2 )

which shows that actually the photon statisticgigsi-PoissonianWhen (1 — )% — oo,
Mandel’'s parameter tends to a constant value

147
21—’

In the limiting casen — 0 this result coincides with that of [34]. The dependence of the
Q-factor on parameters and i (calculated with the aid of the exact expressions (11) and
(14)) is shown in figures 2 and 3.

The asymptotics of the photon distribution function (13uat> 1 can be obtained in a
similar way. In this case functiop(u) reads

(27)

Q) =

o) =pu+[pu@l+n) —-2]InL—u) +ninu.

Equation (27) indicates that the distribution is concentrated in the vicinity of the number
n, = n(l—n)/2 > 1. Neglecting the term-2 in the coefficient at Il — «) and assuming

n =n.(1+¢), le| < 1, we obtain in the zero approximation the same saddle pqirats
before. Performing the calculations up to the terms of the ordef ¢ihcluding the factor
w"/n!, which should be transformed with the aid of Stirling’s formula), we arrive at the
Gauss distribution

2 2 2[n — n(d - n)/Z]Z}
,=A ——— — 28
b [w(3— 77)] exp[ w@—n) (28)

where the factor

A= 1erfc —(1- H }_l
_[2 <( & 2(3—n))

ensures the correct normalization of the photon distribution in the interv@hO< oco. If
n = 1, equation (28) goes to (24). Mf(1—n)? > 1, the A-factor can be replaced by unity.
Figure 4 shows a good agreement between equation (28) and exact formula (13).
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30
1.6

14

1.2

1

0.8

Q-factor

0.6

0.4

eta

Figure 2. Q-parameter versug = Di‘”/Df). The numbers on the curves give the values of
nw=DY /DS 0.1, 1, 10, 30.

6. Approximate expressions for factorial moments in a generic case

Now let us return to the general equation (4) with# 0. The generating function can be
expressed in terms of the factorial moments as follows,

[ee]

F@)=) N (z—1™ (29)

m!

m=0
Then equation (27) shows, that at> 1, F(z) is close to the exponential function of the
variablex = u(z — 1). Equation (4) can be rewritten in terms of this variable as

[2(1 — p) + (1 — 5p)x — 4e?px? — 3px3|F" —[1 — n + e(x + 8p) + 12:%px + 4¢3 px?]

X F' — e[l +4ep + 26%px]F =0 (30)
wheree = 1/u « 1. To fix the solution, we impose the restrictions
F|x:0 =1 lezfoo =0. (31)

The first of them is the normalization condition, while the second one simply means that
po = Fl,——, — 0 whenu — oo, in accordance with the exact results of the previous
sections. Then in the zero approximatien= 0) we immediately obtairF (x) = exp(yx),
where
1-n

21—-p)
Writing F(x) = exp(yx)[1+ ¢f (x)] and taking into account only linear (with respectsfo
terms in equation (30), we arrive at the inhomogeneous equation

20—p)f"+ A= f +y*A—5p)x —y(x+8p) —1=0 (32)

4



Exact stationary photon distributions 5665

0.6

0.5

0.4

0.3

0.2

0.1

Q-factor

Figure 3. Q-parameter versug = Df)/Dé"). The numbers on the curves give the values of

— @/ p@©
n=D\"/D{.

0.16 T T T T T T

0.14
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0 5 10 15 20 25 30 35
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Figure 4. The photon distribution function gi > 1: points indicate exact probabilities, full
curves indicate Gaussian approximation. The numbers at the curves give the corresponding pairs
of values(u, n).
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whose general solution reads
f(x) = ax + bx%> + Aexp(—yx) + B
§ 1+ 3p _14+n+p@B-5n)
S 21-p) - 8(1-p)?
Due to conditions (31)A = B = 0. Consequently, up to the corrections of the order of
1/u « 1, we have the following asymptotic expressions for the factorial moments:

nw(@—mn) 1+3p
— 1 33
M 2(1—p>[ w@—m " ] (33)
1-n 2 3490 —n—11py
No = Mi| |:1 } 34
2 [2<1—p> Tua—z T (34
N m[(m+ 1)1+ 3p) + (m — 3)n — pn(1+ 5m)]
(ny)m 21 (1 —n)?

Thus, the limit value of the)-factor equals

oo 1+n+p@3—5n)
Qe (g, p) = N HPE =)

21-mA—-p)
If o =0, the above relations go to the formulae obtained in the preceding section.

7. Discussion

Let us formulate the main results of the paper. We have generalized the earlier studies of
[34, 35], providing a detailed analysis of the exact solution to the master equation describing
a stationary photon distribution arising due to a competition between one-photon emission,
absorption and two-photon absorption. In particular, we have shown, that in the case of an
inversely populated one-photon reservoir, the photon distribution is close to a Gaussian, and
the photon statistics is quasi-Poissonian. Thus, we have rigorously confirmed the results of
[28-30, 32, 33], obtained in the frameworks of different approximations. We have analysed
the behaviour of various characteristics of the distribution, such as factorial moments or
Mandel’s Q-factor, in all the range of variation of three parameters describing the model.
Moreover, we have succeeded in finding approximate solutions for the factorial moments
in a generic case, when both one- and two-photon emission processes are present.

We have shown that even weak two-photon absorption can drastically change the
stationary state of the field mode. Conversely, an arbitrary small probability of one-photon
emission and absorption completely changes the stationary state of the mode (in comparison
with the caswf) = 0), removing the dependence of the lowest level probabiljtigand
p1 on the initial conditions (7) (which can be considered as some kind of degeneracy) and
replacing it by the unique distribution (16), (17), which depends on the temperature of the
‘one-photon bath’. For this reason, it would be interesting to findpheton distribution
atv — 0 andp # 0.
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