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Exact stationary photon distributions due to competition
between one- and two-photon absorption and emission
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Abstract. We consider steady states of the one-mode quantized field interacting with two
independent baths, each characterized by the one- and two-photon absorption and emission
processes. In the absense of two-photon emission, using an exact analytical solution to the
master equation for the diagonal elements of the density matrix in the Fock basis in terms of
the confluent hypergeometric function, we obtain simple explicit expressions for the photon
distribution function and for the factorial moments in the limiting cases of weak and strong two-
photon absorption. If the two-photon absorption is strong enough, the steady state exhibits a sub-
Poissonian photon statistics characterizing nonclassical behaviour, but Mandel’sQ-parameter
cannot be less− 1

3 . However, the distribution depends essentially on the temperature of the ‘one-
photon bath’. For weak two-photon absorption, the stationary distribution is Gaussian, provided
that the temperature of the ‘one-photon’ bath is high enough. For an inversely populated ‘one-
photon’ bath, theQ-parameter is close to12 . In a generic case of nonzero two-photon emission
probability, approximate asymptotic expressions for the factorial moments are found.

1. Introduction

In many cases, the process of quantum relaxation can be described in the framework of the
master equation for the statistical operatorρ̂ [1–3] (h̄ = 1)

∂ρ̂

∂t
+ i[Ĥ , ρ̂] = 1

2

∑
k

Dk(2Âkρ̂Â
†
k − Â†kÂkρ̂ − ρ̂Â†kÂk) (1)

where Âk ’s (k = 1, 2, . . .) may be arbitrary linear operators, andDk ’s are nonnegative
constants. If the system under study is an electromagnetic field mode (or an equivalent
harmonic oscillator), then Hamiltonian̂H and each operator̂Ak can be expressed in terms of
the annihilation and creation operatorsâ, â† satisfying the commutation relation [â, â†] = 1.
It is not difficult to solve equation (1), ifÂk coincides withâ or â† [4–7]. However, the
problem becomes much more complicated, if some operatorsÂk include the powerŝan or
(â†)n, which are responsible for themultiphoton processes [8]. For instance, exact time-
dependent solutions for thediagonal matrix elements of the statistical operator in the Fock
basis were found in the following cases only:k = 1, Â1 = (â†)2 (two-photon emission
[9–11]); k = 1, Â1 = â2 (two-photon absorption [10, 12–15]);k = 1, Â1 = ân with n > 2
(multiphoton absorption [16, 17]);k = 1, Â1 = (â†)n with n > 2 (multiphoton emission
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[17]). The evolution of the off-diagonal matrix elements in the case of two-photon absorption
was studied in [18], and forn-photon absorption in [17]. Other references can be found,
for example in [19, 20]. In all those cases, the solutions depend on asingle coefficientD1.
Time-dependent solutions for the diagonal elements of the statistical operator in the case
of two independent coefficients, witĥA1 = â and Â2 = â2 (competition between one- and
two-photon absorption), were obtained in [21, 22]).

Other exact solutions with two nonzero coefficients were found in the stationary regime
only. Form-photon absorption andm-photon emission (the systems in detailed balance),
Â1 = âm, Â2 = (â†)m[1 + γ (n̂ + 1)(n̂ + 2) · · · (n̂ + m)]−1/2, this was done in [23]. Here
n̂ = â†â, and the coefficientγ is responsible for the saturation effect in the multiphoton
generalization of the Scully–Lamb [24] single-mode laser equation (the special case of
m = 2 was studied in [14], and the case ofγ = 0 was also considered in [25]). A scheme
of obtaining exact stationary solutions of the two-photon Scully–Lamb equation with single-
photon losses (̂A1 = â, Â2 = (â†)2[1 + γ (n̂ + 1)(n̂ + 2)]−1/2) was given in [26], it was
generalized to the case ofm-photon emission in [27]. Different approximate solutions of
the stationary multiphoton laser equations were given, for example in [28–31] (two-photon
emission and single-photon absorption), [32] (m-photon emission and absorption orm-
photon emission and single-photon absorption), [33] (m-photon emission and absorption
plus additionalk-photon absorption, including the casesm > k andm < k).

In this paper we continue the study of the competition between one- and two-photon
processes which began in [22]. Now we include, besides absorption, the emission processes.
In this case, it is possible to find exact analytical expressions for thestationaryvalues of the
diagonal matrix elements of the statistical operator, provided that onlyone-photonemission
processes are present [34, 35]. In section 2 we give the explicit solution to the problem in
terms of the confluent hypergeometric function. Sections 3–5 are devoted to the detailed
analysis of different interesting limiting cases, when the results can be expressed in terms
of more simple functions. In section 6 we obtain approximate solutions for the factorial
moments in a generic case, when both one- and two-photon emission processes are present.
Section 7 is devoted to a discussion and conclusion.

2. Exact solutions

In the stationary case, equation (1) withfour operatorsÂk: â, â†, â2, and (â†)2, leads to
the following set of equations for the diagonal matrix elements of the statistical operator,
pn ≡ 〈n|ρ̂|n〉, n = 0, 1, . . . :

D
(a)

2 [(n+ 1)(n+ 2)pn+2− n(n− 1)pn] −D(e)

2 [(n+ 1)(n+ 2)pn − n(n− 1)pn−2]

+D(a)

1 [(n+ 1)pn+1− npn] −D(e)

1 [(n+ 1)pn − npn−1] = 0. (2)

The coefficientsD(a)
k andD(e)

k are responsible for the strength of thek-photon (k = 1, 2)
absorption and emission processes, respectively. Introducing the generating function

F(z, t) =
∞∑
n=0

pn(t)z
n (3)

we can replace an infinite system of difference equations (2) by a single differential equation
with respect to an auxiliary variablez,

(1+ z)(1− ρz2)F ′′ + [ν(1− ξz)− 4ρz(1+ z)]F ′ − [νξ + 2ρ(1+ z)]F = 0 (4)

where the new coefficients are defined as

ν ≡ D(a)

1 /D
(a)

2 ξ ≡ D(e)

1 /D
(a)

1 ρ ≡ D(e)

2 /D
(a)

2 . (5)
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Coefficientν is nothing but the ratio of the numbers of atoms in the ‘one-photon’ and ‘two-
photon’ reservoirs multiplied by the ratio of the corresponding coupling constants. The
parametersξ andρ characterize the temperature of each bath. Indeed, ifD

(a)

2 = D(e)

2 = 0,
andξ < 1, then equation (4) results in the Planck distribution,

F1(z) = 1− ξ
1− zξ p(1)n = (1− ξ)ξn. (6)

Consequently, the temperature of the ‘one-photon’ bath can be introduced via the relation
ξ = exp(−h̄ω/κT ). ForD(a)

1 = D(e)

1 = 0, we have [23, 25]

F2(z) = (1− ρ)(1− γ + zγ )
1− z2ρ

p
(2)
2n+j = (1− ρ)ρn(γ + j − 1)(−1)j−1 j = 0, 1

(7)

where the additional parameterγ , characterizing a relative weight of the odd oscillator
eigenstates, is determined by the initial conditions. Evidently, a stationary solution is stable
provided thatρ < 1. However, no restrictions on the ratioξ/ρ exist, i.e. the temperatures
of the ‘one-photon’ and ‘two-photon’ baths may be different. Moreover, the case of an
inverted ‘one-photon’ bath with a negative temperature,ξ > 1, is also admissible.

Let us first consider the special caseρ = 0 (‘cold two-photon bath’). Then equation (4)
is reduced to the Kummer equation

xy ′′ + (c − x)y ′ − ay = 0 (8)

so it can be solved exactly. Since the generating functionF(z) cannot have a singularity
at z = −1, we choose a regular solution to (8) in the form of the confluent hypergeometric
function8(a; c; x), and obtain the following solution to (4) (see also [35]):

F(z) = 8(1; ν[1+ ξ ]; νξ [1+ z])

8(1; ν[1+ ξ ]; 2νξ) . (9)

It can be expressed also in terms of the incomplete gamma function [34, 35]. The
normalization factor is chosen in order to guarantee the identity

F(1) ≡
∞∑
n=0

pn ≡ 1.

Knowing the generating function, we can calculate the probabilities

pn = (1/n!)∂nF/∂zn|z=0

and the factorial moments

Nm ≡
∞∑
n=m

n(n− 1) · · · (n−m+ 1)pn = ∂mF/∂zm|z=1.

Using the relation [36]
dn

dxn
8(a; c; x) = (a)n

(c)n
8(a + n; c + n; x)

where

(a)n ≡ a(a + 1) · · · (a + n− 1)

we obtain the following expressions, which hold for 06 ξ <∞:

pn = (ξν)n8(1+ n; ν[1+ ξ ] + n; νξ)
(ν[1+ ξ ])n8(1; ν[1+ ξ ]; 2νξ) (10)

Nm = m!(ξν)m8(1+m; ν[1+ ξ ] +m; 2νξ)
(ν[1+ ξ ])m8(1; ν[1+ ξ ]; 2νξ) . (11)
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However, in numerical calculations it is more convenient to use the integral representation
[36]

8(a; c; x) = 0(c)

0(a)0(c − a)
∫ 1

0
exuua−1(1− u)c−a−1 du c > a > 0.

Thus, atν[1+ ξ ] > 1 equations (9)–(11) can be rewritten as follows

F(z) = I0(ν[1+ ξ ]; νξ [1+ z])

I0(ν[1+ ξ ]; 2νξ) (12)

pn = (ξν)nIn(ν[1+ ξ ]; νξ)
n!I0(ν[1+ ξ ]; 2νξ) (13)

Nm = (ξν)m Im(ν[1+ ξ ]; 2νξ)
I0(ν[1+ ξ ]; 2νξ) (14)

where

In(c; x) =
∫ 1

0
exuun(1− u)c−2 du = dn

dxn
I0(c; x) c > 1. (15)

Now let us investigate the limiting cases of equations (9)–(11).

3. Strong two-photon absorption

If the two-photon absorption dominates over one-photon processes,c = ν(1+ ξ)� 1, then
only the ground state and the first excited level are populated with noticeable probabilities.
In this case, one can simplify the function8(a; c; x), using its definition

8(a; c; x) =
∞∑
k=0

(a)kx
k

(c)kk!

and the relations

(c)0 = 1 (c)k ≈ c(k − 1)! (n+ c)k ≈ (n)k n, k > 1.

Finally, we obtain (cf [35])

p0 = 1+ 2ξ

1+ 3ξ
+O(ν) p1 = ξ

1+ 3ξ
+O(ν) (16)

pn ≈ νn−1ξn

(n− 1)!(1+ 3ξ)
n > 2. (17)

For the ‘hot one-photon bath’,ξ = 1, we obtainp0 = 3
4 and p1 = 1

4, whereas for the
‘completely inverted bath’,ξ � 1 (but νξ � 1), we havep0 = 2

3 andp1 = 1
3. The photon

statistics becomes sub-Poissonian:

Q ≈ −N1 ≈ −ξ/(1+ 3ξ) (18)

where

Q ≡ N2/N1−N1 (19)

is the known Mandel’s parameter. This a typical result for a sufficiently strong two-photon
absorption process [19, 20]. The boundary between the sub- and super-Poissonian statistics
is given by the equationQ = 0, which is equivalent to the relationν(1+ ξ) = 1. In such a
case, we have theexact Poissonian statistics [35], due to the relation8(a; a; x) ≡ exp(x).
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Figure 1. Mean photon numbern versusξ ≡ D
(e)
1 /D

(a)
1 . The numbers on the full curves

give the values ofν ≡ D
(a)
1 /D

(a)
2 : 1, 10, 100, 1000. The broken curve describes Planck’s

distribution.

4. Weak two-photon absorption

If ν →∞ (D2→ 0), then equations (9) and (10) must yield the expressions corresponding
to the Planck distribution (6). However, the limit procedure is not trivial in the high
temperature caseξ → 1: see figure 1. Ifc � 1 and β < 1, the asymptotic
formula 6.13.3(18) from [36]

8(a; c; cβ) = (1− β)−a
[

1− a(a + 1)β2

2c(1− β)2 + · · ·
]

shows that the Planck distribution can be obtained only under the conditionsν(1− ξ)2� 1
andn2/ν � 1. To find a simple asymptotic expression, valid forall values ofξ , we notice
that the main contribution to the integralI0(c; x) with c � 1 is given by the points in the
vicinity of u = 0. Using the substitution

(1− u)c−2 = exp[(c − 2) ln(1− u)] ≈ exp[−(c − 2)(u+ u2/2)]

and extending the integration domain up to infinity, we obtain the asymptotics ofI0(c; x)
andF(z) in terms of the error function:

F(z) = ϕ
(√
χ(1− zξ))

ϕ
(√
χ(1− ξ)) (20)

where

ϕ(y) ≡ exp(y2)erfc(y) χ ≡ ν

2(1+ ξ) (21)

and

erfc(x) ≡ (2/√π) ∫ ∞
x

exp(−t2)dt.
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Equation (20) holds forν(1+ ξ)� 1. Since the derivatives of functionϕ(y) are expressed
in terms of the parabolic cylinder function (see equation 8.2(19) from [36]),

dmϕ(y)

dym
=
√

2

π
m!(−1)m2m/2 exp(y2/2)D−m−1

(
y
√

2
)

we obtain

pn =
√

2

π
(2ξ2χ)n/2eχ/2

D−n−1
(√

2χ
)

ϕ
(√
χ(1− ξ)) . (22)

An asymptotic expression for the parabolic cylinder function of a large argument is given
by equation 8.4(1) from [36]. In the case under study it can be transformed into the form

D−n−1(x) = x−n−1e−x
2/42n(x) x � 1

where

2n(x) =
∞∑
k=0

(−1)k
(n+ 1)2k
k!(2x2)k

.

Replacing(n+ 1)2k by n2k, we obtain a simple interpolation expression forx � 1,

2n(x) ≈ exp[−n2/(2x2)].

Thus we have the following asymptotics of the photon distribution atχ � 1:

pn = ξn exp[−n2/(4χ)]√
πχϕ

(√
χ(1− ξ)) . (23)

If
√
χ(1− ξ))� 1, this formula goes to the Planck distribution due to the asymptotics [36]

ϕ(y) ≈ 1/(
√
πy). Keepingν = constant and increasing the temperature of the first bath,

we shall reach the high-temperature regime 06 √χ(1− ξ)� 1. Since erfc(0) = 1, in this
case (an infinite temperature of the first bath) we obtain theGauss distribution(χ ≈ ν/4):

pn = 2√
πν

exp

(
−n

2

ν

)
. (24)

The asymptotics of themth factorial moment atν(1+ ξ)� 1 reads

Nm = m!
√

2/π(2ξ2χ)m/2 exp[(1− ξ)2χ/2]D−n−1

(√
2χ(1− ξ)

)
/ϕ
(√
χ(1− ξ)) . (25)

If
√
χ(1− ξ)� 1, we obtain the Planck distribution with

Nm = m!

(
ξ

1− ξ
)m
.

In the opposite case,
√
χ(1− ξ) � 1, the parabolic cylinder function can be replaced by

its value at zero argument [36]Dα(0) = 2α/20( 1
2)/0([1− α]/2), so we have

Nm = 0([m+ 1]/2)νm/2/
√
π. (26)

This approximate formula is in a good agreement with the exact one even forν ∼ 1.
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5. Inverted one-photon bath

Equations (10) and (11) have no singularities atξ = 1, moreover, they hold for an inversely
populated ‘one-photon’ bath with negative temperature (ξ > 1). In this case it is convenient
to introduce the parameters

µ ≡ D(e)

1 /D
(a)

2 = νξ η ≡ 1/ξ ν(1+ ξ) ≡ µ(1+ η).
Consider equation (14) for themth factorial moment. To calculate the functionIm(µ[1 +
η]; 2µ) we write the integrand in equation (15) as exp[ϕ(u)], where

ϕ(u) = 2µu+ [µ(1+ η)− 2] ln(1− u)+m ln u.

For µ � 1, η < 1 (inverted bath), andm ∼ O(1), the maximum ofϕ(u) is achieved at
u∗ ≈ (1− η)/2, i.e. inside the interval(0, 1). Consequently, the integral can be evaluated
with the aid of the steepest descent method. In the zero-order approximation one arrives at
the formulaNm ≈ [µ(1− η)/2]m, meaning a Poissonian photon statistics. To obtain the
first-order corrections (with respect to 1/µ), one has to calculate the saddle-point coordinate
u∗ with an accuracy of 1/µ2. After some algebra we arrive at the expression

Nm ≈
[µ

2
(1− η)

]m (
1+ m[m+ 1+ η(m− 3)]

2µ(1− η)2
)

(27)

which shows that actually the photon statistics isquasi-Poissonian. Whenµ(1−η)2→∞,
Mandel’s parameter tends to a constant value

Q(∞)(η) = 1+ η
2(1− η) .

In the limiting caseη → 0 this result coincides with that of [34]. The dependence of the
Q-factor on parametersη andµ (calculated with the aid of the exact expressions (11) and
(14)) is shown in figures 2 and 3.

The asymptotics of the photon distribution function (13) atµ� 1 can be obtained in a
similar way. In this case functionϕ(u) reads

ϕ(u) = µu+ [µ(1+ η)− 2] ln(1− u)+ n ln u.

Equation (27) indicates that the distribution is concentrated in the vicinity of the number
n∗ = µ(1− η)/2� 1. Neglecting the term−2 in the coefficient at ln(1− u) and assuming
n = n∗(1+ ε), |ε| � 1, we obtain in the zero approximation the same saddle pointu∗ as
before. Performing the calculations up to the terms of the order ofε2 (including the factor
µn/n!, which should be transformed with the aid of Stirling’s formula), we arrive at the
Gauss distribution

pn = A
[

2

πµ(3− η)
] 1

2

exp

[
−2[n− µ(1− η)/2]2

µ(3− η)
]

(28)

where the factor

A =
[

1

2
erfc

(
−(1− η)

√
µ

2(3− η)
)]−1

ensures the correct normalization of the photon distribution in the interval 06 n < ∞. If
η = 1, equation (28) goes to (24). Ifµ(1−η)2� 1, theA-factor can be replaced by unity.
Figure 4 shows a good agreement between equation (28) and exact formula (13).
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6. Approximate expressions for factorial moments in a generic case

Now let us return to the general equation (4) withρ 6= 0. The generating function can be
expressed in terms of the factorial moments as follows,

F(z) =
∞∑
m=0

Nm
m!
(z − 1)m. (29)

Then equation (27) shows, that atµ � 1, F(z) is close to the exponential function of the
variablex = µ(z − 1). Equation (4) can be rewritten in terms of this variable as

[2(1− ρ)+ ε(1− 5ρ)x − 4ε2ρx2− ε3ρx3]F ′′ − [1− η + ε(x + 8ρ)+ 12ε2ρx + 4ε3ρx2]

×F ′ − ε[1+ 4ερ + 2ε2ρx]F = 0 (30)

whereε = 1/µ� 1. To fix the solution, we impose the restrictions

F |x=0 = 1 F |x=−∞ = 0. (31)

The first of them is the normalization condition, while the second one simply means that
p0 ≡ F |x=−µ → 0 whenµ → ∞, in accordance with the exact results of the previous
sections. Then in the zero approximation (ε = 0) we immediately obtainF(x) = exp(γ x),
where

γ = 1− η
2(1− ρ) .

Writing F(x) = exp(γ x)[1+ εf (x)] and taking into account only linear (with respect toε)
terms in equation (30), we arrive at the inhomogeneous equation

2(1− ρ)f ′′ + (1− η)f ′ + γ 2(1− 5ρ)x − γ (x + 8ρ)− 1= 0 (32)
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whose general solution reads

f (x) = ax + bx2+ A exp(−γ x)+ B
a = 1+ 3ρ

2(1− ρ) b = 1+ η + ρ(3− 5η)

8(1− ρ)2 .

Due to conditions (31),A = B = 0. Consequently, up to the corrections of the order of
1/µ� 1, we have the following asymptotic expressions for the factorial moments:

N1 = µ(1− η)
2(1− ρ)

[
1+ 1+ 3ρ

µ(1− η) + · · ·
]

(33)

N2 =
[
µ(1− η)
2(1− ρ)

]2 [
1+ 3+ 9ρ − η − 11ρη

µ(1− η)2 + · · ·
]

(34)

Nm
(µγ )m

− 1≈ m [(m+ 1)(1+ 3ρ)+ (m− 3)η − ρη(1+ 5m)]

2µ(1− η)2 . (35)

Thus, the limit value of theQ-factor equals

Q(∞)(η, ρ) = 1+ η + ρ(3− 5η)

2(1− η)(1− ρ) .
If ρ = 0, the above relations go to the formulae obtained in the preceding section.

7. Discussion

Let us formulate the main results of the paper. We have generalized the earlier studies of
[34, 35], providing a detailed analysis of the exact solution to the master equation describing
a stationary photon distribution arising due to a competition between one-photon emission,
absorption and two-photon absorption. In particular, we have shown, that in the case of an
inversely populated one-photon reservoir, the photon distribution is close to a Gaussian, and
the photon statistics is quasi-Poissonian. Thus, we have rigorously confirmed the results of
[28–30, 32, 33], obtained in the frameworks of different approximations. We have analysed
the behaviour of various characteristics of the distribution, such as factorial moments or
Mandel’sQ-factor, in all the range of variation of three parameters describing the model.
Moreover, we have succeeded in finding approximate solutions for the factorial moments
in a generic case, when both one- and two-photon emission processes are present.

We have shown that even weak two-photon absorption can drastically change the
stationary state of the field mode. Conversely, an arbitrary small probability of one-photon
emission and absorption completely changes the stationary state of the mode (in comparison
with the caseD(e)

1 = 0), removing the dependence of the lowest level probabilitiesp0 and
p1 on the initial conditions (7) (which can be considered as some kind of degeneracy) and
replacing it by the unique distribution (16), (17), which depends on the temperature of the
‘one-photon bath’. For this reason, it would be interesting to find thephoton distribution
at ν → 0 andρ 6= 0.
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